Methodology for Simulation and Analysis of Complex Adaptive Supply Network Structure and Dynamics Using Information Theory
نویسندگان
چکیده
Supply networks existing today in many industries can behave as complex adaptive systems making them more difficult to analyze and assess. Being able to fully understand both the complex static and dynamic structures of a complex adaptive supply network (CASN) are key to being able to make more informed management decisions and prioritize resources and production throughout the network. Previous efforts to model and analyze CASN have been impeded by the complex, dynamic nature of the systems. However, drawing from other complex adaptive systems sciences, information theory provides a model-free methodology removing many of those barriers, especially concerning complex network structure and dynamics. With minimal information about the network nodes, transfer entropy can be used to reverse engineer the network structure while local transfer entropy can be used to analyze the network structure’s dynamics. Both simulated and real-world networks were analyzed using this methodology. Applying the methodology to CASNs allows the practitioner to capitalize on observations from the highly multidisciplinary field of information theory which provides insights into CASN’s self-organization, emergence, stability/instability, and distributed computation. This not only provides managers with a more thorough understanding of a system’s structure and dynamics for management purposes, but also opens up research opportunities into eventual strategies to monitor and manage emergence and adaption within the environment.
منابع مشابه
Adaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کاملThe Paradox of Intervening in Complex Adaptive Systems; Comment on “Using Complexity and Network Concepts to Inform Healthcare Knowledge Translation”
This commentary addresses two points raised by Kitson and colleagues’ article. First, increasing interest in applying the Complexity Theory lens in healthcare needs further systematic work to create some commonality between concepts used. Second, our need to adopt a better understanding of how these systems organise so we can change the systems overall behaviour, creates a paradox. We seek to m...
متن کاملConnections, Communication and Collaboration in Healthcare’s Complex Adaptive Systems; Comment on “Using Complexity and Network Concepts to Inform Healthcare Knowledge Translation”
A more sophisticated understanding of the unpredictable, disorderly and unstable aspects of healthcare organisations is developing in the knowledge translation (KT) literature. In an article published in this journal, Kitson et al introduced a new model for KT in healthcare based on complexity theory. The Knowledge Translation Complexity Network Model (KTCNM) provides a fresh perspective by mak...
متن کاملOptimal adaptive leader-follower consensus of linear multi-agent systems: Known and unknown dynamics
In this paper, the optimal adaptive leader-follower consensus of linear continuous time multi-agent systems is considered. The error dynamics of each player depends on its neighbors’ information. Detailed analysis of online optimal leader-follower consensus under known and unknown dynamics is presented. The introduced reinforcement learning-based algorithms learn online the approximate solution...
متن کاملAdaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks
This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Entropy
دوره 18 شماره
صفحات -
تاریخ انتشار 2016